CROSSED MOLECULAR BEAM STUDIES
ON THE INTERACTION POTENTIALS FOR Cl(2P) + Xe(1S)

C.H. BECKER *, J.J. VALENTINI **, P. CASAVECCHIA †, S.J. SIBENER and Y.T. LEE ‡‡

Materials and Molecular Research Division, Lawrence Berkeley Laboratory
and Department of Chemistry, University of California, Berkeley, California 94720 USA

Received 18 December 1978

A crossed beam experiment has provided angular distributions of \(^{35}\text{Cl}(^2P_{3/2,1/2}) \) scattered off Xe(1S) at 4 collision energies from 2.37 to 26.1 kcal/mole. Interaction potentials for the \(X_{3/2}, 1S \) and \(II_{1/2} \) states are obtained via an approximate elastic scattering analysis as done previously for F-Xe, Kr, Ar, Ne. The \(X_{3/2} \) potential obtained (\(\epsilon = 0.80 \) kcal/mole, \(r_m = 3.23 \) Å) is a corroboration of the recent spectroscopically derived potential of Sur et al. The \(II_{1/2} \) potential (\(\epsilon = 0.37 \) kcal/mole, \(r_m = 4.1 \) Å) closely resembles that of ground state Ar-Xe.

1. Introduction

There has been considerable interest recently in halogen–rare gas (X-RG) diatomics as they comprise a class of high power ultraviolet excimer lasers. Cl–Xe was one of the first of these lasing systems (at 308 nm) to be reported [1]. In fact, excimer is somewhat a misnomer for the Cl–Xe, and F–Xe, systems, as bound–bound spectral transitions are observed. This has allowed accurate spectroscopic (RKR) analysis of the ground state \(X_{3/2} \) Cl–Xe potential [2,3]. No spectroscopic information is available for the \(II_{1/2} \) or \(II_{3/2} \) states, though ab initio configuration interaction calculations have been performed on all of the states of possible laser interest [4]. The state labels used throughout are those appropriate to Hund’s case c coupling, and the electronic states considered in this work are the \(X_{3/2} \) (or \(I_{1/2} \)) and \(I_{3/2} \) arising from the ground state four-fold degenerate \(2P_{3/2} + 1S_0 \) atomic asymptote, and the \(II_{1/2} \) from the doubly degenerate spin–orbit ex-

* Present address: Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
** Present address: Los Alamos Scientific Laboratory, Los Alamos, New Mexico 87545, USA.
† Permanent address: Dipartimento di Chimica dell’ Università, 06100 Perugia, Italy.

...
nals at a reference angle were used for the comparison of the signals at all the observed angles in order to normalize possible fluctuations of beam intensities and other experimental conditions.

The stagnation pressure and temperature of the Xe beam was kept at 450 torr and 20°C. With a 0.1 mm nozzle, this is about the highest stagnation pressure for Xe without significant dimer formation in the expansion. Cl atoms were produced by Cl₂ thermal dissociation in a resistively heated high density graphite oven/nozzle [6]. Different relative collision energies E_{rel} were obtained by varying the Cl velocity utilizing the seeded beam technique. The gas mixtures used were $\approx 1\%$ Cl₂ in He, Ar, or Xe, and stagnation pressures ≈ 1000 torr were used. No XeCl or XeCl₂ was found in the hot beam. Beam velocities and spreads were measured by the time-of-flight method, and the full-width-at-half-maximum (fwhm) velocity spreads were $\approx 20\%$ for Cl and $\approx 10\%$ for Xe. fwhm angular divergences were about 1° for Cl and 2° for Xe. The graphite oven temperature of ≈ 2000 K produces about 21% spin–orbit excited $^2P_{1/2}$ atoms; the spin–orbit relaxation of Cl atoms is expected to be very slow during the isentropic expansion. Consequently the composition of Cl($^2P_{1/2}$) in the beam is not expected to differ from that in the oven. Some Cl₂ was also present in the beam and the small 35Cl⁺ contribution from Cl₂ was taken into account from the measured angular distributions of Cl₂ detected as Cl⁺ and the fragmentation ratio of Cl₂(Cl⁺/Cl₂) in the ionizer, and subtracted to give the final $I(\Theta)$ of Cl + Xe.

Inelastic scattering involving electronic transitions is expected to be a very small contribution to $I(\Theta)$ because of the large splitting of 881 cm⁻¹ between $^2P_{1/2}$ and $^2P_{3/2}$ of Cl. Consequently no attempt was made to detect the fine structure inelastic process by time-of-flight.

3. Results and analysis

Laboratory angular distributions of 35Cl scattered off Xe are shown in fig. 1 at nominal $E_{\text{rel}} = 2.37, 2.57, 6.18,$ and 26.1 kcal/mole. Exemplary error bars are given, when visible outside the circles, representing ± 1 standard deviation of the mean. The number of scans over an angular range varies from 3 to 9. As a check on the reproducibility of the data, the $I(\Theta)$ at $E_{\text{rel}} = 2.57$ kcal/mole was taken a considerable time after the other three $I(\Theta)$ were recorded using new beam set-ups intended for comparing $I(\Theta)$ at $E_{\text{rel}} = 2.37$. Although the collision energy turned out to be slightly higher, this data is compatible with the other $I(\Theta)$, as can be seen in fig. 1.

An elastic scattering approximation is used in the
analysis, which has been described elsewhere [7,8]. This method of computing differential cross sections neglects nonadiabatic coupling and is appropriate to molecules of Hund’s case c coupling. JWKB phase shifts are used in the single channel scattering. Twenty-one Newton diagrams contribute to final $I(\Theta)$ calculations to represent beam velocity spreads, and angular averaging is also performed to mimic the beam/detector geometry. Flexible piecewise analytic representations of the $V_{X^\pm 1^\pm}$ are used and the approximation $V_{1^\pm} \approx V_{1^\pm}$ is employed. The potential form is the Morse—Morse—Hermite-spline—van der Waals (MMHV) function:

$$f(x) = V|\epsilon, \ x = \rho/r_m;$$

$$f(x) = e^{2\beta_1(1-x)} - 2e^{\beta_1(1-x)} , \quad 0 \leq x \leq 1;$$

$$= e^{2\beta_2(1-x)} - 2e^{\beta_2(1-x)} , \quad 1 \leq x \leq x_1;$$

$$= a_1 + (x-x_1)(a_2 + (x-x_1)[a_3 + a_4(x-x_1)]) , \quad x_1 < x < x_2;$$

$$= C_6 R/x^6 - C_8 R/x^8 , \quad x_2 < x < \infty ,$$

where $C_{iR} = C_i/\rho r_m$, and ρ and r_m are the depth and position of the potential minimum. Conditions on the Hermite spline are continuity of $f(x)$ and $df(x)/dx$ at x_1 and x_2. The C_6 constants are estimated from the Slater—Kirkwood formula for effective number of electrons [9]; polarizability values are from the literature [10,11]. The C_6 of 1^\pm corresponds to II symmetry, while the C_6 of X^\pm is best approximated by the average of the Σ and Π contributions (see ref. [12], eq. (13)). The C_8 is estimated from the Ar—Xe C_8 [11]. The permanent quadrupole—induced dipole R^{-8} induction term is neglected because of its small size, as are other coefficients of the asymptotic expansion.

The $V_{X^\pm 1^\pm}$ are determined by fitting calculated $I(\Theta)$ to the experimental values through varying the analytic potential parameters. The C_6 and C_8 were held fixed though, and little variation was made in the x_1, x_2 values. Complete uniqueness of the fitted potentials is not guaranteed by this method. However, the range of the potentials is sensitive to the ratio of rainbow to wide angle scattering intensities. Rainbow and supernumerary rainbow positions and relative intensities are quite sensitive to potential well depths and curvature. To estimate these interaction potentials accurately it is necessary to measure the $I(\Theta)$ at several collision energies covering a wide range.

The validity of the elastic approximation is supported by its ability to corroborate an accurate spectroscopically determined $V_{X^\pm 1^\pm}$ for F—Xe [7], and by more rigorous coupled-channel scattering calculations [12].

The fitting began using an analytic representation of the spectroscopic numerical $V_{X^\pm 1^\pm}$ values [2]. It was found the experimental $I(\Theta)$ could not improve upon these values, so they were retained. Quite good sensitivity to the V_{1^\pm} well was found in the low energy $I(\Theta)$.

The final $I(\Theta)$ are shown in fig. 1, the derived $V_{X^\pm 1^\pm}$ are shown in fig. 2, and the potential parameters are listed in table 1. As already noted, the V_{1^\pm} can be approximated by the V_{1^\pm}. In general though, a better V_{1^\pm} can be derived as shown in ref. [12] from the $V_{X^\pm 1^\pm}$ and V_{1^\pm}.

The resultant V_{1^\pm} shows very close resemblance to the ground state 1^Σ^-Ar—Xe potential. Elastic scattering studies performed in our laboratory have given the Ar—Xe potential, which we believe to be accurate to $\pm 3\%$ in ϵ and r_m [13]. The parameters of the Ar—Xe potential are also listed in table 1 for reference. This Ar—Xe potential is slightly outside other recently proposed values [14].

![Fig. 2. Cl Xe $X^\pm 1^\pm$ and 1^\pm interaction potentials. Note scale change at 0.1 kcal/mole.](image-url)
Table 1

Cl–Xe V_{X^2}, I_2^- and Ar–Xe V_{I^-} interaction potential parameters

<table>
<thead>
<tr>
<th></th>
<th>XeCl, X_2^+</th>
<th>XeCI, I_2^-</th>
<th>Ar + Xe</th>
</tr>
</thead>
<tbody>
<tr>
<td>ϵ (kcal/mole)</td>
<td>0.80</td>
<td>0.37</td>
<td>0.379</td>
</tr>
<tr>
<td>r_m (Å)</td>
<td>3.23</td>
<td>4.10</td>
<td>4.01</td>
</tr>
<tr>
<td>β_1</td>
<td>5.2</td>
<td>7.6</td>
<td>6.5</td>
</tr>
<tr>
<td>β_2</td>
<td>3.3</td>
<td>5.1</td>
<td>6.33</td>
</tr>
<tr>
<td>C_6 (kcal/mole Å6)</td>
<td>2279</td>
<td>2410</td>
<td>1957</td>
</tr>
<tr>
<td>C_8 (kcal/mole Å8)</td>
<td>14250</td>
<td>14250</td>
<td>12005</td>
</tr>
<tr>
<td>C_{10} (kcal/mole Å10)</td>
<td>–</td>
<td>–</td>
<td>93502</td>
</tr>
</tbody>
</table>

Uncertainties in the Cl–Xe ϵ and r_m parameters are obtained by systematically varying the parameters and observing when the $I(\Theta)$ fits become poor. The estimated maximum uncertainties are within ±7% in ϵ and r_m for both the V_{X^2}, I_2^-. Possible errors in the Morse β parameters are likely to be of a similar magnitude, based on their observed influence on the $I(\Theta)$ during the fitting procedure. Sensitivity to the repulsive walls is less than for the well region owing to worse signal-to-noise for the structureless wide angle $I(\Theta)$, and multiple potential scattering. Of course, there is no information gained about the repulsive wall above the highest E_{rel}.

4. Discussion

The $I(\Theta)$ measured in this experiment is the result of scattering of Cl with Xe through three interaction potentials. For this type of scattering experiment involving multiple interaction potentials, it is not possible to carry out meaningful analysis of individual potentials unless experiments are performed at many collision energies covering a wide energy range and the coupling between different states involved is weak (as in this case).

The application of the elastic approximation for Hund's case c coupling, as previously done for F–Xe [7] and F–Ne, Ar, Kr [8], again is fruitful in its corroboration of the recently obtained spectroscopic V_{X^2} [2] and its yielding an accurate V_{I^-} (and $V_{I_2^-}$). The spectroscopic V_{X^2} was not determined to an absolute r_m, but rather to a value relative to two excited states, though sound arguments were used in estimating r_m. While this study cannot place an extremely tight bound on the X_2^+ r_m, again, it is supportive of the conclusions of Sur et al. We consider all our stated uncertainties to be conservative.

The fact that the obtained V_{I^-} is so similar to the Ar–Xe ground state potential underlines the validity of the electronic closed shell–closed shell van der Waals picture where the interaction takes place with the fully occupied p orbital along the internuclear axis. The greater strength of this van der Waals interaction as compared to the F–rare gas series has allowed the most accurate $V_{I_2^-}$ determination to date, simply due to its significant influence on the three lowest E_{rel} $I(\Theta)$.

The common explanation for the Cl–Xe V_{X^2} consists of a combination of (a) less repulsion due to only 2 half-filled p orbital along the internuclear axis, (b) a small amount of charge transfer lessening this repulsion, and (c) the contribution from interatomic correlation energy [15] (the dispersion energy in the limit of zero electron overlap). As has been mentioned [8], it may also prove worthwhile to examine the approximation that the spin–orbit coupling is constant over the range of internuclear distances considered. It appears that Cl–Xe and F–Xe are the only two significantly bound X–Rg molecules. However, the shapes
(or force constants) of these two V_{Xe} are very different, F–Xe having a very tight well and Cl–Xe being broad. At this point, an explanation of this phenomenon seems possible only by considering the absolute strengths of the above-mentioned contributions as a function of internuclear distances.

Nonadiabatic coupling in XeCl and its influence on scattering is discussed in ref. [12].

Finally, if there is a desire to extrapolate these repulsive walls to higher energy, one may make use of ab initio calculations [4], at least in obtaining the wall slopes. Alternatively, one may make use of the simple model recently proposed [16] to obtain Born–Mayer repulsion parameters from values of e, r_m, and van der Waals coefficients, especially for the $V_{I1\frac{1}{2}}$ and $V_{I1\frac{1}{2}}$.

Acknowledgement

We thank J. Tellinghuisen for communicating his results prior to publication. This work was supported by the Office of Naval Research (Contract No. N14-77-C-0101), and by the Division of Chemical Sciences, Office of Basic Energy Sciences, U.S. Department of Energy. P. C. acknowledges a fellowship from the Italian National Research Council (CNR).

References