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In this article we discuss how pseudorandom sequences are generated for use in cross-correlation 
modulation experiments and present means for generating all pseudorandom sequences 
(module-two) that have a maximum length of N=2”- 1, with n=2-12. We explain the 
criteria that the pseudorandom sequences must satisfy, and find the set of recursion coefficients 
which are used to generate the pseudorandom sequences, These sets of recursion coefficients 
were calculated for II ==2-16, with n =2-12 being explicitly presented in this article. We also 
explain how each set of recursion coefficients can be used to generate maximum length 
pseudorandom sequences of length sufficient for use in cross-correlation chopping. 

Despite their usefulness as random number generators, 
data encryption devices, and white noise sources,’ 
maximum-length pseudorandom sequences (MLPRS), or 
cross-correlation (CC) modulation have been exploited 
only sparingly in experimental settings. Most notably, they 
have been used in a variety of time-of-flight (TOF) scat- 
tering experiments to gate a flux of particles which are then 
detected in a time-resolved fas;hion. In these experiments 
the incident flux of particles has typically been supplied by 
either a thermal neutron sou:rce,2-4 or by a molecular 
beam.5-7 A cross-correlation (CC) chopping technique is 
generally favored over single-shot chopping when both 
chopping procedures produce id.entical backgrounds due to 
the significant duty cycle advantages of CC modulation.6,7 
This advantage, the gain factor, may be as high as N/4,6*7 
where N is the length of the pa.ttern. 

RC. The purpose of this article is to enable the routine 
generation of MLPRS using these recursion coefficients for 
use in a variety of applications having a wide range of 
resolution requirements. 

Since the gain in duty cycle may significantly improve 
the signal-to-noise ratio and decrease the counting times 
needed to resolve TOF features, we present a table that 
contains all the base ten values for the recursion coeflcients 
(RC) which can be used for the facile generation of 
MLPRS. Knowing the values of these RC, the MLPRS 
can be easily generated from the RC and used in CC mod- 
ulation experiments. Previous papers have provided de- 
tailed accounts of both the properties and the usefulness of 
MLPRS in relation to CC chopping techniques.2-7 In this 
article, we focus on the generation of the MLPRS 
(modulo-two) that have length N=2n- 1, where n is an 
integer. We have calculated all sets of RC for n =2-16, 
with the base ten values of these RC for n=2-12 being 
explicitly presented here. Examples and tables are pre- 
sented that explain how the RC are used to generate “trial” 
sequences. These trial sequences are then tested to see if 
they satisfy three conditions w:hich must be passed if the 
trial sequence is a MLPRS. Following the discussion and 
examples, the base ten values for the RC which generate 
MLPRS are presented. Also included is a discussion of two 
properties that were discovered in the calculated sets of 

MLPRS were previously discussed by Peterson’ and 
Watson’ and were derived from polynomials m(X) of de- 
gree of n, which are irreducible over the Galois field of 
integers modulo-two.8*9 If the coefficients of m(X) are used 
as the feedback elements in a binary shift register circuit,’ 
the output of the shift register generates a MLPRS. [The 
coefficients of the polynomial m(X) are the same as the 
recursion coefficients of length n.] Peterson has shown how 
to generate the coefficients of m(X) algebraically and gives 
a table of these coefficients in octal form for values of n 
= 2-34.8 Watson generated one set of such polynomial co- 
efficients for n=2, 100 using a computer algorithm.g Our 
study differs from these two studies in that all possible sets 
of recursion coefficients which can be used for generating 
MLPRS were checked computationally for n=2, 16. 

There are three conditions that a sequence must satisfy 
for it to qualify as a MLPRS, and hence be of use in CC 
modulation. These conditions are: (1) that the sequence 
recur after N=2”- 1 steps, (2) that the autocorrelation of 
the sequence sum to 2#-‘, and (3) that the cross correla- 
tion of the sequence sum to 2”-2. If these three conditions 
are met the sequence is a MLPRS. 

MLPRS are not entirely random, but repeat them- 
selves after N numbers are generated. This is the first con- 
dition that the MLPRS sequences must obey, and is the 
condition of recurrence, which means that the aitN eIe- 
ment should equal the ai element. This condition is impor- 
tant since the chopping, i.e., beam modulation, pattern is 
restarted upon the completion of one rotation of the wheel. 
This is both a necessary and practical constraint when the 
signal is generated by a mechanical chopper and collected 
by a multichannel scaler. The sequences are mathemati- 
cally represented with l’s, which denote an open chopper 
slot, and O’s, which denote a closed chopper slot. 
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iv- 1 
A,= C api+) 

i=O 
(1) 

The second condition that must be met for a trial MLPRS, 
is that when j=O, A, must equal 2”-i. This operation 
counts the autocorrelation of the sequence which simply 
corresponds to summing the number of l’s in the sequence. 
When j#O, Aj counts the cross correlation of the sequence. 
When a sequence is totally uncorrelated these elements are 
0. However, if some correlation exists, Aj is greater than 
zero. Comsa et al6 and others,3V4 have shown that when 
j#O, Aj equals 2”-2. This is the third condition that the 
trial MLPRS must satisfy. Using these three conditions 
implies that the total number of l’s in each MLPRS is N/2 
and the number of O’s is N/2- l.6 Using only these three 
requirements, i.e., ( 1) that the sequence be cyclic, (2) that 
the diagonal elements sum to 2”-‘, and (3) that the off- 
diagonal elements sum to 2n-2, we now proceed to gener- 
ate the sets of RC which in turn generate MLPRS. 

We tested the sets of binary RC spanning the range 
fromofM=3toM=N-l,whereN=2”-1andMisthe 
base 10 representation of the RC. Each value of M is trans- 
lated from its base 10 representation to its base 2 represen- 
tation. For example, when n = 3, N= 7, M spans from 3 to 
6 and the possible base 2 representations of the RC 
(Q3Q2Q,) are M=3-011, M=4-+100, M=5-+101, and 
M-+ 110. The values of M= 1,2 are eliminated from testing 
for all n because a set of RC with only one RC equal to 1 
will just repeat the initial values of a, through a,. (Note 
that this statement is also true for M=4, which has only 
one RC equal to 1. This will also be true for every M which 
is a power of 2. These values for M can also be eliminated 
from the search.) The value for M=N is eliminated since 
for this value of M all the RC are equal to 1, which gen- 
erates a sequence with all l’s for odd n, or a sequence with 
alternating l’s and O’s for even n. A trial MLPRS is cal- 
culated using the binary values for M, in the following 
manner: The first n values of ai, ale3 in our present exam- 
ple, are set equal to 1. (This is not a unique choice and any 
other initial values can be assigned to the first n values, 
except choosing them all equal to 0.) The ai+, element is 
obtained from the binary summation of the products of the 
n previous als with the set of binary RC, Q,Q,- i...Q3Q2Qi, 
or more generally: 

a r+l=QRai~Qn-lai-1CBQ,-2ai-2 
. . . @Qzai-tt+2@Qlai--.+,, (2) 

where the symbol d means that the addition is modulo- 
two. The a/s are then shifted by one index (ai-n+i-+ai-n, 
%.n+2-ai-n+b etc.) and the next ai+, is then calculated 
using Eq. (2). This procedure is continued until the aNtn 
element is reached, in order to check that the sequence 
recurs to the initially assigned ais. 

This procedure for generating the trial MLPRS using a 
set of binary RC is shown in more detail in Table I, again 
using iU=3 (n=3) as an example. The RC are shown on 
top of the second thru fourth columns as Q3=0, Q2=l, 
and Q, = 1. The first row shows an initial set of alm3 all 
chosen equal to 1 and entered in the second through fourth 

TABLE I. Generation of the trial MLPRS: 1110010, for n = 3, N= 7, and 
M= 3. The set of recursion coefficients is Qs=O, Q2= 1, and Q, = 1. The 
first column contains the value of i+ 1, a,, i, where i is the sequence index 
[Eq. (2)]. The second through fourth columns contain the curent values 
Of ai- through ai. The sum of Eq. (2) is shown in the fifth column and 
the modulo-2 sum is shown in the sixth column. The calculated MLPRS 
is read from top to bottom starting at it I= 8 = 1 down i+ I= 10= 3; 
then it is read from i+ 1=4 to i+ 1=7. 

M=3 
Q,=O Q2=1 Q,=l 

i+l ai- I C-2 sum modulo-2 sum 

4 1 1 1 2 0 
5 0 1 1 2 0 
6 0 0 1 1 1 
7 1 0 0 0 0 
8=1 0 1 0 1 1 
9=2 1 0 1 1 1 
10=3 1 1 0 1 1 

columns in Table I. The sum of Eq. (2), 
Q,a, @ Q2~2 @ Q3~3=2, and is shown in the fifth column 
with the modulo-two sum shown in sixth column. This 
modulo-two term, equal to 0 for this first row, is the value 
assigned to a4. Stepping to the next index, i+ 1 = 5, the a24 
values shown in columns 2-4 generate a modulo-two value 
of 1 for a,. This generation process is continued until i-j- 1 
= 10 which is when a MLPRS will repeat the initial start- 
ing sequence (i.e., uiw3= 111). The MLPRS for this exam- 
ple is 1110010, and is shown in Table I. 

This trial MLPRS for M=3 is then tested to see if it 
meets the three previously discussed conditions. For the 
above example, with M=3, the recurrence condition is 
met, as the values repeat: ~,=a,, a2=a9, and a3=alo. The 
sum of the diagonal elements for this sequence equals 4, 
which satisfies the second condition. The third condition is 
also satisfied, and can be checked using Eq. ( 1) with j#O; 
here for example, when j= 1 we have 

A1=l~0+l~l+l~l+0~l+0~0+1~0+0~l=2. (3) 

Since this trial MLPRS meets all three conditions, the se- 
quence 1110010 is a true MLPRS. 

One property of MLPRS is that if the MLPRS is read 
in reverse (from right to left), the reverse sequence is also 
a MLPRS. This is demonstrated in Table II by producing 
the MLPRS for M=5 (n=3 and the Qis become Q3= 1, 

TABLE II. Same as Table I except M= 5 and the set of recursion coef- 
ficients: Qs=l, Q2=0, and Q,=l. The resulting MLPRS is 1110100 
which upon reversal is 1110010. This reversed sequence, lllWl0, is iden- 
tical to the MLPRS generated and shown in Table I. 

M=5 
Q3=1 Qz=O Q,=l 

i+l a, at-1 at-2 sum modulo-2 sum 

4 1 1 1 2 0 
5 0 1 1 1 1 
6 1 0 1 2 0 
7 0 1 0 0 0 
8=1 0 0 1 1 1 
9=2 1 0 0 1 1 
IO=3 1 1 0 1 1 
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TABLE III. Base 10 values for the recursion coefficients which produce 
MLPRS for n=2-12. For each value of n the value of N=2”- 1, Mare 
shown. 

n N MS 

2 
3 
4 
5 
6 
7 
8 
9 

10 

11 

12 

3 
7 
15 
31 
63 
127 
255 
511 

1023 

4095 

3 
3 
9 
5, 15, 23 
3, 27, 39 
3, 9, 15, 29, 39,43, 63, 75, 111 
29, 43,45, 77, 95, 99, 135, 207 
17,27,45, 51, 89,95, 111, 119, 125, 135, 149, 163, 175, 
183, 189,207,219,27fi, 287,315, 335, 347, 383, 399 
9,27, 39.45, 101, 111, 139, 197, 215,231, 243, 255, 
269, 291, 317, 323,343,363, 399,407,455, 503, 567, 
591,603,639, 735, 765,791 
5.23, 43, 45, 71, 99, 101, 113, 123, 141, 149, 159. 169, 
177,207,231, 235,245, 269,275, 293, 297.315, 317, 
325, 347, 371,373, 383,387, 399,427,429,441,455, 
485, 503, 519, 531, 533,621,639,669, 679, 683,735, 
751,763, 771, 819, 831, 843, 863, 879, 893,903,907, 
915,943,951,957,987,999, 1035, 1055, 1111, 113 1, 
1139, 1175, 1179, 1203, 1215, 1223, 1271, 1295, 1319, 
1351, 1391, 1439, 1467, 1495, 1511, 1575, 1631, 1695, 
1743 
83, 105, 123, 125, 153,209,235,263,287, 291, 315, 
335, 343, 363,389, 435,473,473,479, 525, 567, 573, 
615,627, 639, 697, 715, 783, 797, 825, 831, 845,931, 
1031, 1079, 1103, 11 Ii, 1127, 1141, 1191, 1197, 1235, 
1295, 1309, 1357, 1427, 1495, 1501, 1515, 1607, 1725, 
1859, 1971, 1983,2135,2199,2287,2331,2427,2443, 
2511,2535,2587,2603,2847,2903,2983,3007, 3095, 
3111,3231,3279,3631 

Q2 = 0, and Q, = 1) . This set of RC shown in Table II also 
produces a MLPRS, 1110100, which if reversed is 
0010111. Because the sequence is cyclic it can be read 
(from left to right) starting at any point in the sequence, 
and the previously reversed sequence becomes 11100110. 
This sequence, 1110010, is the same as the sequence shown 
in Table I. 

The sets of RC have another interesting property. Af- 
ter all of the possible sets of RC which generated MLPRS 
were found, a relationship was discovered between pairs of 
sets of RC with the same n. Paired sets of RC were found 
that were related to each other by shifting the least signif- 
icant binary RC digit to the most significant binary digit 
position: for half of the RC sets, Q,Q,-,...QsQ,Q,, a 
“shifted” set of RC was also found, Q,QnQn-,...QsQ*, 
which also generated MLPRS. The property was taken 
into account when compiling the list of RC reported in 
Table III, and for listing the total number of RC in Table 
IV. For the sets of RC listed in Table III, the lowest RC, 
Q,, is always equal to 1 so that M is always odd. Therefore 
the “shifted” set of RC obtained by moving Q, to the Q, 
position always results in a set of “shifted” RC that have 
larger numerical value than the “initial” RC (shifted M is 
greater than initial M). For each set of RC shown in Table 
III, shifting the least significant binary digit to the most 
significant binary digit position can only be applied once. 
Shifting the RC listed in Table III more than once will not 
generate MLPRS. 
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TABLE IV. The total number of sets of recursion coefficients (excluding 
the shifted set of recursion coefficients) as a function n. 

n No. of MLPRS 

2 1 
3 1 
4 1 
5 3 
6 3 
7 9 
8 8 
9 24 

10 30 
11 88 
12 72 
13 315 
14 378 
15 900 
16 1024 

The sets of RC reported in Table III were screened in 
the following manner. Once a set of RC passed the tests to 
prove it generated a MLPRS, its shifted complement was 
calculated and stored in an array. Subsequent sets of RC 
which also generated MLPRS were then screened to see if 
they were previously listed in the shifted complement ar- 
ray. If the subsequent set of RC was listed in the shifted 
complement array, the set was not stored. If the set was not 
found listed in the shifted complement array, its M value 
was stored and the RC elements were added to the shifted 
complement array. For example, shifting the set of RC 
(011) in Table I, gives the set of RC ( 101) which are 
identical to the set of RC shown in Table II. The set of RC 
was screened in this manner to cut down on the number of 
MS reported in Table III. 

The sets of RC we have found (excluding the shifted 
RC) are shown in Table III, for n=2-12 and the number 
of unique MLPRS (excluding the shifted RC) are shown 
in Table IV for n= 2-16. These coefficients can be easily 
used to generate MLPRS for any value of n. The MLPRS 
can then be machined or lithographically etched onto a 
mechanical wheel, or applied as voltage pulses, to gate 
experiments. 

The MLPRS generated from the sets of RC in Table 
III can be compared to previously published CC wheel 
patterns.&” We transcribed the CC pattern in a clockwise 
fashion from the picture of each wheel shown in each of the 
following references.&’ Nowikow and Grice designed a CC 
wheel with four identical patterns of 31 sequence elements4 
which corresponds to the first set of RC, Q;s=OOlOl in the 
n=5 section of Table III, M=5. Hirschy and Aldridge 
designed a CC wheel with one pattern of 255 sequence 
elements5 which corresponds to the sixth set of Q;s 
=OllOOOll in the n=8 section, M=99. Finally, the CC 
wheel designed by Comsa et al. has two identical patterns 
with 255 sequence elements6 and corresponds to the re- 
verse MLPRS generated from the first set of Q;s 
=OOOlllOl in the n=8 section, M=29. In addition, we 
find that the two element RC for n =2, 12 in Horowitz and 
Hill are found in Table III.’ We note that the RC pre- 
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sented in Table III can be used to generate a large selection 
of MLPRS for use in CC modulation experiments, many of 
which have been not previously used for such purposes. 

In conclusion, we have presented the sets of recursion 
coefficients in Table III for n=2-12 and demonstrated 
how these recursion coefficients can be used to generate 
maximum length pseudorandom sequences. These se- 
quences can be exploited for cross-correlation modulation 
measurements. The signal-to-noise enhancement resulting 
from such CC chopping will depend primarily on how the 
increase in duty cycle influences the background counting 
rate. Providing a list of sequences having differing lengths 
is useful, as one can now conveniently select the appropri- 
ate MLPRS length which achieves the desired time reso- 
lution for a given application. For a mechanical chopper 
spinning near 400 Hz the time resolution on any time-of- 
flight (TOF) feature is z 5 ps for n = 9, but decreases to 
-2.5 ,us for n= 10. When changing from lower time reso- 
lution to higher, the lithographic precision of the etched 
chopper wheel will decrease. However this is not a problem 

since imperfections in the etched wheel can generally be 
corrected for during the deconvolution.6 The actual choice 
of pattern can therefore depend on the desired time reso- 
lution. 
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